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the wave (which leads to the export of westerly momentum in middle
latitudes-) is steeper in P6432(2-3) and P6432 than F6432(5), This
result in weaker easterlies for F6432(5) which can be seen on
Fig,18(A). The latitudinal distribution of the mean zonal flow and the
main wave for the v-field, on day 6 [Fig.lS(A and B) and Fig,19(A

and B)] , indicate that the experiments with Fourier filter, on that
day, are closer to the control run than the other experiments, N6432
shows clear irregularities on the mean zonal flow and the main
disturbance of the +/-field, Fig.l18(A and B), N6432 shows an increase

of kinetic energy of about 28% on day 6 and subsequently '"blows-up",

Fig,20, F6432(5) shows irregularities in low and high latitudes on
day 8, Fig.21(A), and the calculation is ended after 9 days due to the

- accumulation of energy in high wavenumbers, At this time the kinetic
energy has increased by about 53%, as shown in Fig,20, Fig.,2l

shows the h-fields, on day 8, for the experiments F6432(5), P6432(2-3),

P6432 and the control run, Apart from the area of irregularitiies
shown on the field of F6432(5), the comparison between the fields
shows better result for the runs with the Fourier filter, For example,
in middle latitudes F'6432(5) shows open waves while, as expected
from the results of others and also from our control run (Fig, 21(D)),
P6432(2-3) and P6432 give closed systems in middle latitudes, F

It is clear from this section that the periodic filter does

control the aliasing instability and at the same time gives reasonable
evolution of the flow with time with little additional computing time,

On the other hand for wavenumber 6 the friction term with coefficient
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of losm"/Sec is not enough to prevent the accumulation of energy in
high wavenumbers and higher values of the friction coefficient will
cause excessive smoothing,

From these experiments we cannot conclude that a non-
linear viscous term would not do a better job, but certainly the
results of Miyakoda et al (1971) indicate that such an approach is not

too promising,
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CHAPTER V

SUMMARY AND CONCLUSIONS

One of the problems of long range forecast models is their
need for some sort of smoothing to prevent the non-linear (aliasing)
instability and to achieve reasonably smooth fields, Two methods are
tried for a one level primitive global model, The use of a Fourier
filter which eliminates the 3-gridlength waves and smaller from time
to time, and the addition of a linear friction term, in the momentum
equation, to dissipate the kinetic energy especially from small scale
waves, The models are tested with two types of simple initial
conditions, a stable wave where the fields tend to return back to their
initial values and unstable wave where the fields break down within
few days, Up to three or four days the models show no significant
differences between the two approachs, In fact, even runs without
any smoothing are in good agreement with them,

The 3-gridlength filter completely controls any instability
up to the 20 day limit of our runs, It also requires little additional
computer time, The time evolution of the flow is quite reasonable
except if the filter interferes with an essential exchange of energy
between the shorter and longer waves, In this case the filter can
cause serious deviations from the true solution, In this case the

solution to the error is to increase the resolution of the model,

On the other hand, a coefficient of viscosity equal 10 ni/sec.

¢
fails to prevent the non-linear instability while 2 value of 10 m /sec

D oy

e ———




smoothed the fields too much, Further, the use of the friction term

requires considerably more computer time as indicated in section II, 8,
Perhaps a nonltinear viscosity formulation would be more
useful, but based on the work of Miyakoda et al (1971) this does

not appear promising,

Somewhat surprisingly, the application of the 3-gridlength
filter each time step gave the best overall results for both the stable
and unstable wave, Such a procedure is however wasteful of resolution
when the pseudospectral algorithm is used for the estimation of
derivatives, Further, such a procedu:» would effectively convert
the pseudospectral model into a spectral model with about 2/3 of the
. number of degrees of freedom, In that case it may well be more
efficient to use a spectral model from the start,

While the results generally indicate that numerical
filtering is better than a friction term, it is not obvious that the
particular filter used is best, In fact, some less drastic form of
numerical smoothing may be able to provide equally good long term
numerical stability without strongly interfering with energy exchanges
in a stable type flow,

Finally, it should be noted that these results have been
obtained with very simple initial conditions, As such, they can only
be indicative of sort of conclusion that would be obtained with initial

conditions from real data,
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Appendix (I): Friction formula

Starting with the viscous force in the form

st
E =9 o (31)

where the stress tensor

Gps = ) (\lr,s 5 2 Vs,r) (3%)
For surface spherical polar coordinates the distance ds in two
dimension is defined as

(ds} =2 (de )’+ & sin® (dA )‘.
where )\ longitude and @ colatitude,

Or, (dsf =2 (dx‘;' + 2 sid X, (de .

where
2 i

3\\ =a d’“d 3“ =& Sin X, »
and

" l 21 \

- — a“d B e Y

3 & V7 F o %

Now

— Ve im = We ¢V "
V\',s = I \lrs Vim = T{S'irskv‘ -irsk Yis (33)
where { :s} is Christoffel symbol of the second kind defined as
2 re
trs}gﬁ [mn)P].

Lmn, e ] is Christoffel symbol of the first kind defined as

3MMne )9 29
- L — e“- ™ &
Emn,?] B - X" + " Bx"“

It is easy to prove that




NSt . TR e B TSR

-T2 .

D) = D,a) = Dl = (an1) = (2] = o

and

‘_12, 23 =& sinx, cos x,,
[21,2] =& sinx, cos x,,

[22,1] = -a sin x, cos x, .

So
iz\li = - sin x, cos x, i:“} =cot X, ={:-.,_7] .
From (33)
kT }S\_‘;E.‘ :
Vaa = ‘%\_T’i ~cot x, W .
V‘,.‘ = \;‘2 -cotxy V, ,
and b P %«. +sin x|, cos x, V, ,
and from (32)
S =V ( “\:ﬁ.
Gz V (Vy, +v“ ) =29 ( \_;_%‘_é—sin x, cos x, V),
and SvaE N =9(§§_f‘.+ %; -2cot %y V, ).

Now in terms of physical components

V= Vb =8 V/by =V /a,
v, = Vih,= §°% /hy = /(2 sine ).
Or
v, =a Vo and V,=asing V ,
further
6‘-0=h';6,“=6'.;/a = ("'\IO) ) \%"
or ST hG = L-‘d ‘"‘W“)-t-fme crg V)
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As F - %‘t &, and \‘;‘
¥ rs,t \'s,t I i_ Srm™ rtk‘:‘"
P
3 & \
S Fr = 3 vi,l Ly 3 rz,t T AW atsimte Ty = 4
where
[
R \x' {ull s-m_i } e
v \
= X\ -ir!.] Su i .} € -
So
\G" hqd
GT)"_‘.?“ and ‘;‘:‘\ - -—--\o -— COte .
Also

G:t,z = }x‘_ i,_,,} rm"i 1( wmy *

- \“;‘\ 4 Sin X Cos Xy Sy, -ir;k i:;\& S

“o 6q,y = T—- 4+5ing Cos @ €, — ct @ 6

and

(;;,1 = }%+zsine Cos@ Gy

So from (34)

' * T Sime 'Lt

_b‘gg
— = A Ce
- — ‘ 5 + X & GEQ—Cote 1y

Ve, )L dSex t - .
I_’i'a' T b ato g,
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Similarly we can prove that

‘ LS 2% .\ 36, 42 cto o
.‘ E =l el oA

To get the equations in terms of P (latitude) and A (longitude)

and to replace Vo and Yy by <+ and u as meteorologist generally
do, we use the following relations
w=T0/2 -9 y Vg =-v and Vi = u.

Then it is possible to prove that

3 N R :
F. = ] 3'2_ - T N S T N A T AN
€= Ja R ¥ ST a4 T e D

_z*mq% _"s_“‘:‘!..q"} ,

and ey
N T e
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Appendix (II): CFL criterion

In order to obtain guidelines for the choise of time step
we treat the numerical stability problem in Cartesian rather than
spherical coordinates, This approach was taken by Jacques(1976)

with useful results, Here we include a friction term, Consider in

Cartesian coordinates the following equations

‘ Bk §2+° 3_‘»:_\_3_\#_’

T A
L N
| W _ 2 o u
=TT T '\‘bk\xt* \at-)’
and b IR AR
e T o % T 3y /4
where é =g§ is a constant,

Using Fourier series, let us express all the dependent variables in

the form
W(kxe+ly)

A:%?A,e 5

A 1is function of time, k is the east-west wavenumber and L is the
north-south wavenumber, Using a leapfrog time scheme and reme-
mbering that the space derivatives are exact, the finite differences
analogues to the above equation, for a particular mode k and !,

can be written as

teat - ¢- tat .
W = UEF waatDikel 40 (8],

tat t-at t-at

Voo, cozat [ 49N, (k"-t-r)]:

el e[k 24t ],
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where we have used the standard technique of calculating the friction

term at time t- Ot,

Assuming solutions of the form

Ve ¥
wt
-\)o o= "\,* e 2 &35-)
& %

where \?, 'JT and q:* are constants, we find that

J.‘(A_j‘) 429 At X (K L)Wt zi st R 20

;
VEO-E) 4 20 at X (KEE) T L aint L4t =0 s :
‘:' cP*LA.I‘)_l_z; Q{ 5’(\;-* +7_‘ B&éL'\’* =0

: - 3 £

’ where A =€ .

wat f
14
The condition for a non-trival solution is that the determinant of the t

algebraic system vanish, i.e.

A2 )+ 29 at X' (K 1Y) o 2iatk
; o (A-i‘)*.;gﬁtj'(k\fl‘) viatd i
" 2i st P K iatdd BHY) t

a If we denote A=(A-3“)+2‘) at X\ (K‘+’:). |

' ‘ then expansion of the determinant yields the condition
; -\
Ai (A=) )A+4 (At)‘é (k‘+’:)} =0,

€. In order for the calculation to be stable we must have all possible
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values of A to be such that | A1,
Caxa 1,
The first case we consider is when the first factor in the above

condition is zero, i,e.

¢x-Fised arpde X3 =0,
or

A=1-2) at(¥+L),
Then to insure stability wé require that

AL -2y aed ey = 1L
The r.h,s, is always satisfied, The l.h,s, gives a condition for
stability

At = 1/ Y (@+8),

Without friction these modes are neutral, with friction we expect

the modes to be exponentially damped, Note however that if

1/Q(k‘+9-‘) = b6t = l/ZQ(k‘+5~").

—

then x < 0 and the solution is not physically realistic since
there will be a sign change each second time step, Thus a reason-
able condition to impose is
at < 1/ 23 &+,
Case 2,
When the second factor is zero we have

(A=A 429 at(@+83 (2 -8 s 48] G (#+L)=0,

or  (N-F+2Y at(R+2) (AN +a(at)fP (K +1NH)N =0,
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Putting
a=9at(¥+L) and b=2(at) P (K1), .

the above equation can be written as

(b +smif sl 1yema0,

or
X +2(a+b)X+26=0,
where X:)\L-l.
So x=-(a+b)_+_\}Ta+b)‘-?§,
or

T e R +[(a+b) -Zb]‘/,:

Suppose that

e e e

(a+b§'-2b<0,

then the stability condition . ‘)\1\5\ implies that

[(1-a-b)‘-{_(a+b)‘-2b}]‘/"é i

or \
(1l-2a* & 1,

)

e -

By definition a 2 0 and since we have choosen a £ 1/2, from

the study of the first factor, we find that this condition is always
satisfied, But if
(a+b) -2b=0,
or \,\‘\ = | implies that
o i.ill 1-(a+b)i{(a+b)"-2bj){él. |

s always satisfied since
1\
s o l‘-Zb]"] < | a+b\.

s root is the lower sign on the radical, since it
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will contribute to decreasing the middle expression, It is therefore

necessary and sufficient that : 5‘
E | 2 2
i , l-(a+b)-\(a+db) -2b|{ =2 -1,
{ ( L 1= |
i | d 2 % :
| (a+b)+[(a+b) -] 2.
; g It follows that
1 Y
§ T G
| [(a+b)-2b]$ 2-(a+b).
E 1 Now if (a +b) > 2, then the inequality can never be satisfied,
| therefore
2-(a+b) mustbe = 0, ‘i
é Then it is possible to square the previous inequality, which gives 1
2 =2 22 + b, %
2 : s ;
3 C 129 (at) (K +Y)+(at) P (¢ +0). i
Without friction this condition reads

at = 1/ (¥ + ¥ ¥, (36)

\

where C =(g H )*  is the speed of gravity waves,

In our experiments H = 8 km and the largest value used for v,

é
the kinematic viscosity, is 10 m/sec., Also the smallest value

used for At, in our experiments, is one minute, This means that
in our experiments At § is greater or of the same order as y) ,
So with fully explicit scheme we can say, in our experiments, that

the friction do not have significant effect on the CFL criterion which

" Q can be considered (36).

Let us now integrate the same system of equations using

the one dimensional semi-implicit scheme discussed in II,4, Using
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a leapfrog time scheme, then for a particular mode k and I we get

(' t-ot 2
u*:“ ¥ u:‘“= -2 M[ikﬁg}ﬁz +9( k’u?i! ue;'“ )],
S A T At[iQ & s (e ],

vk bat ubie, bt E
P- =2 Pk et L Q)

Assuming solution in the form (35), the equations become, with

iwab

/\:6 >

SA-F i atkd (A +A )29 ard (L) =0,
S -it 2 acla¥ 2y acd (2400,
LA-Ar+ i atE k(A T +2i atE LV =0,

& ! V* and qf have non-trivial solution if

(A-Xrs2) Atk (#+8) 0 P atk (444
0 (A=A ez acd' (248) 21 add
i g atk() +,\") 2i atdl (A -A.')
With Aeid e 1oz ar i Bel ) wege

afa A aryac e s (atdeE (a3 Y] = o.

Which gives
A =0,

with the condition of stability, as discussed before, namely

At 1 J2Y 2+8 .

The other solution gives
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- By

(x-X T +2Y (ad (A -Tr R s (a2 4

s(nt) 3 A+ V=0,

or

(X1t +2d (o) (R +L) (K- +cat] @ (L +1) +
sata: 1Bl =0,
Putting
ae Soeir sl b=(nt) ¥F and c=2(5t?§f,
the previous equation reads '

X (l+4b)+2X (a+2b+c)+2(2b+c)=0,

where
e N,
\
P X = {— (a+2b+c)+ [( a+2b+c ;' - 2(1+b)(2b+cjt}/(1+b)
or T

-
"

1 \ i 2b 2b+c) -2(1+b)(2b \/"{
+ Tr-_l_—F)— - (a+ +C)i (a+2 +c) -2(1+b)( +Cﬂ

~ Following the same procedure as before, we get as a condition for

stability
1S Van) (¥ +L)+an) L .

The condition without friction is

stz 1/ %c.




Appendix (III): The relation between the momentum transport

and the tilt of the <-field

In the northern hemisphere a north (south) transport of
westerly momentum is associated with north-west/south-east (north-
east/south-west) tilt of the «-field, This relationship between the
tilt of the v-component of wind and the direction of momentum tran-
sport is strictly valid only in the case of gecstrophic winds, Here
we perform a sample calculation of the actual momentum transport
to indicate that this relationship is valid for the numerical experim-
ents described,

The momentum transport across a given latitude circle

is proportional t
propo n o -

SRS
2T

L]
(}
where u and v are the deviations of the velocity components from
the zonal average. In the sample calculation, by far the dominant

component is wavenumber four, Therefore we can write
W = A cos (4) - W),

~'= B cos (4)\ -9, ),

where A and B are the amplitudes for u and ~', Y, and ¥,

are the phase angles,

It follows that the momentum transport can be written as
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Fig. 22, The latitudinal distribution of the difference between
the phase angles, for wavenumber 4, of the u and v
fields for the experiment F3216(5), After 3 days
(solid line), 6 days (dash line) and 9 days (cot line),
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L BA .
;F ‘lT
:T( o' dA = %W—S AB cos(4) -\9,) cos(4) -%) di
= A5 cos(Ru-%4) .

The previous equation shows that the direction of the momentum
transport across a latitude circle is determined by the phase differ-
ence between u' and V' with the following rules:
Northward transport of westerly momentum for

T /2L VY-8 <T/2,
with maximum at Y. -y =0 .
Southward transport of westerly momentum for

/2 £ \Q“-‘Q.q< 3w/ 2,

with maximum at Wo- P,y =T,
The momentum transport is zero for, Y, -Yy =T/2 or 3 W2,

Fig.22 shows the distribution of \,-Yy with latitude
ondays 3, 6 and 9 for the experiment F3216(5). Comparing
Fig.22 with Fig.3(A)Y page 33), it is clear that we get the proper sign

of the momentum transport by inspecting the tilt of the v-field.
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